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Abstract:

A micromachined deformable mirror with pixelated electrostatic
actuators is proposed. The paper begins with a physical description of
the proposed mirror. Then a mathematical model in the form of a nonlinear
partial differential equation describing the mirror surface deformations
is derived. This model is used to derive the required voltages for the
actuators to achieve a specified static deformation of the mirror
surface. This is followed by the derivation of a static nonlinear
feedback controller for achieving noninteracting  actuation. Then the
structure for a complete control system for wavefront correction is
proposed. The paper concludes with a discussion of the physical
implementation of the proposed control system.

1. INTRODUCTION

In the development of large space interferometers and multi-aperture
reflectors, deformable mirrors are used to compensate for distortions in
elements of the optical train and/or in the instrument’s field of view.
Such mirrors should be small and lightweight. Moreover, they should be
highly pixelated so that the deformations can be controlled with high
lateral resolution.

The first actively controlled deformable mirrors were developed by
NASA in the 1960’s for use as solar collectors or as ground-based
telescopes [11. Since then, there has been extensive development in this
area. Comprehensive surveys of works on actively controlled deformable
mirrors were given by Ealey [2] and Tyson [3]. In 1977, Grosso and Yellin
[4] developed a membrane mirror whose deformations are controlled by
means of discrete electrostatic actuators. Subsequently, various forms of
deformable mirrors with discrete piezoelectric  and magnetostrictive
actuators were also developed [51-[91. The advent of silicon VLSI
technology has made possible the integration of deformable mirrors with
microelectronic circuitry. In 1983, Hornbeck [10] perfected a deformable
mirror device with pixelated mirror elements whose size is 51 pm square.
The mirror deformations are controlled by electrostatic actuators driven
by microelectronic circuits which are integrated with the mirror
assembly. His mirror was used primarily as a light modulator. Later, in
1989, a wavefront control device with a deformable mirror integrated with
control and sensor units was introduced by Ealey and Wheeler [111. In
their device, the actuators are spaced 1.0 mm apart. The voltages applied
to the actuators are on the order of 200 volts. Recently, efforts have
been initiated at the Jet Propulsion Laboratory in exploiting micro-
machining technology to develop deformable mirrors with the afore-
mentioned characteristics and with pixelated electrostatic actuators
which are spaced less than 25 microns apart. In this paper, attention is
focused on the analytical design of control systems for such deformable
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mirrors.
The paper begins with a physical description of the proposed mirror.

Then a mathematical model in the form of a nonlinear partial differential
equation describing the mirror surface deformations is derived. This
equation is used to derive the required actuator voltages to achieve a
specified static deformation of the mirror surface. This is followed by
the derivation of a static nonlinear feedback controller for achieving
noninteracting actuation. Then the structure for a complete control
system for wavefront correction is proposed. The paper concludes with a
discussion of the physical implementation of the proposed control system.

2. PHYSICAL DESCRIPTION OF DEFORMABLE MIRROR

Figures 1 and 2 show respectively the sketches of the top and side
views of the proposed deformable mirror with p~xelated capacitive
actuators. The mirror may be realized as “flip chip’’-type assemblies
consisting of two matched micromachined silicon structures mounted
face-to-face and fused together along their peripheries. The key elements
of the mirror consist of simple, easily replicated, electrostatic linear
actuators, each responsible for pulling on a small portion of a thin
flexible silicon membrane which is the substrate for the deformable
mirror. The mirror surface is formed by depositing a metallic or
multi-layer dielectric film on the membrane. The membrane with posts (See
Fig.2) is micromachined  from a silicon sheet. The posts serve as supports
for the membrane and also as halves of the electrostatic actuators. The
bottom half of the mirror assembly consists of a set of posts with four
silicon blades attached to each post. These blades serve as leaf springs
for supporting the posts of the upper mirror assembly, and for providing
a restoring force for the actuation system. This bottom assembly is
micromachined from a silicon wafer. The electrostatic actuators are
formed by attaching conductive pads to the upper posts and the bottom
half of the mirror assembly. The electronic element access, electronic
actuator drivers, and possibly the feedback controller circuitry may be
monolithically integrated into the mirror assembly.

We note that the geometric structure of the deformable mirror proposed
here differs from that of Hornbeck [10]. In his mirror, each actuator,
when activated, produces a concave deformation of the mirror surface over
the entire pixel. This causes focusing of the incoming light beam in
front of the pixel. Here, each actuator pulls down on the mirror surface
at a post area and thereby
the mirror surface. Except
overall shape of the mirror
all the actuators.

The initial performance
control of a 32 x 32 pixel
goals have been achieved,

induces deformation over adjacent portions of
for the flat spots over the post areas, the
surface is determined by the displacements of

goals for the proposed mirror will be the
flat mirror with 10 nm accuracy. Once these
efforts will be directed at extendin~ the

number of pixels/control elements until 10 nm accuracy can be ac~ieved
over a 1024 x 1024 pixel surface.

3. MATHEMATICAL MODEL

Let Q be an open connected subset of the Euclidean plane R2 with a
piecewise smooth boundary ~fl representing the spatial domain of the
mirror. We introduce a mesh on !2 whose mesh points are denoted by x =

(x x ), m= 1 M; n= 1 N.
lm’ 2n )...s *...9 For a rectangular mirror, Qm~s
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specified by QR = {(xi, x2) E R2: Ixll = t? Ixz! ~ tz}, where t.hc .!~’s1’
are specified lengths. For a circular mirror, Q is specified by t,hc disk
nc = {(r,e), O s r s rO, O s O 5 2rr}. At each mesh point x , we

mn
introduce a patch !2 , a bounded open subset of L! representing the

mn
effective spatial domain of the (m,n)-th actuator force containing x as

mn
an interior point. Typical meshes and patches for the rectangular and
circular mirrors are shown in Fig.3.

Let the mirror surface be a thin membrane with density p = p(x) being
a specified positive piecewise  smooth function satisfying the following
bounds:

o < Pmin = p(x) = p < +m for all x G Q. (1)
max

The variation of the mass density due to the supporting posts can be
included in p by setting p(x) = pmn (a known constant) for x G Q .

mn
Let m i,j =

ij’
1,2 denote the components of the symmetric stress

tensor in the mirror surface satisfying the positivity condition

(2)

where c and c
1

z are known positive constants. In the special case with

uniform tension T, we have c = T6 where ~
ij

denotes the Kronecker
lJ’ lJ

delta.

The downward displacement u(t,x) normal to the mirror surface at a
point x E Cl and time t z O can be described by the following equation:

(3)

where f = f(t,x) is the surface force density whose explicit form will be
derived later. Assuming that the mirror is rigidly attached to its
boundary EKZ,

Finally, the

To derive

u must satisfy the boundary condition

u(t,x) = O for x E an and t a O. (4)

initial conditions for u are specified by

U(o,x) = Uo(x), #(t,x) = u:(x) for x E ~. (5)

an explicit expression for the surface force density f, we
first consider the electrostatic force density over a patch Q due to a

specified voltage Vmn(t) applied to the (m,n)-th actuator. We ~ssume that

the mirror surface curvature is small so that each patch Q is

essentially parallel to the bottom assembly. Thus each actu~~or’s
conductive surfaces can be regarded as making up a parallel-plate
capacitor. Neglecting fringing effects of the electric field at the
boundary of Q the electrostatic force density is given by

mn’
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[

v (t)

, )
2

fe(t, x) = -&. *(-L ~ ~ forallxc Q,
mn

mn
(6)

where D is the distance between the undeformed mirror surface and the
bottom plane and c is the permittivity  of free space. When D >>

0

Iu(t,xmn)l, (6) can be approximated by

f (t,x) = +OV~n(t)/D2 forallx~~. (6’ )
e mn

Considering each leaf spring as a small cantilever beam having uniform
cross section with moment of inertia I and Young’s modulus E, the force
density f. due to four leaf springs over the patch Q is given by

mn

f~(t,x) = 12E1 U(t,,x ) for all x G Q (7)
.t3 A mn mn’

mn mn

where A denotes the area of the patch Q . Here, we have neglected the
mn mn

inertial effects of the leaf springs.

Let + denote the spatial weighting function associated with thernn
(m,n)-th actuator such that @inn(x) = O for x ~ Q - (Q u an ).

Combining (6) and (7), equation (3) becomes a nonlin~ar par~~al
differential equation given by

:2 -$f, %jw+]p(x) -+
‘i;{+&O~D~m;:t;X))2- ~sA }

12EI
U(t, xmn) #Jmn(x). (8)

mnm=ln=l mn mn

Let K(x,x’,t,~)  denote the Green’s function corresponding to the
solution of the linear equation:

(9)

with boundary and initial conditions given by (4) and (5), where 6
denotes the Dirac delta function at t = z and x = x’. Equation (8) can be
reformulated as a nonlinear integral equation:

U(t,x)  =

f
K(x,x’, t,O)U  ( X ’ )  dx’ +

J
‘(x,x’, t,O)u~(x’) dx’

n o ~ at

t
+
H

K(x,x’,t,~)
f;{;&o[D:m~~~x))2-~;E~  m.} m.

u(t,x ) #J (x’)dx’
oil mnm=l~=l mn mn

(lo)

Under the assumption that the mirror deformations over Q are

sufficiently small compared to D so that (6) may be approximated b~n(6’ ),
equations (8) and (10) become linear. This assumption may not be
justified when D is made small so as to reduce the operating voltage
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levels of the actuators. For example, in Hornbeck’s deformable mirror, D
is’620 nm, and the peak mirror deformation for normal operation is around
100 nm. Evidently, (6’) is not a good approximat.ion for this case.

4. STATIC SHAPE CONTROL

Let. Ud = Ud(x) be the desired static shape of the mirror surface

defined over the entire spatial domain L?. It is required to determine the
static voltages V for each actuator to achieve the desired shape Ud.

mn
Let K = K~(x,x’ ) denote the Green’s function associated with thes
boundary-value problem:

(11)

with boundary condition

u(x) =Oforxearl. (12)

Then, the static equation corresponding to (8) can be reformulated as
an integral equation for the mirror displacement u corresponding to given

static actuator voltages V :
mn

for x E Cl. (13)

Let u = (U(XII), . . .. U(XIN). U(XHI(XHI ),. ..,u(xMN))T and ~k = (~k
- k ‘ k

11’”””’
v v Vk )T,

IN’”””’  Ml’’””’  t4N
k = 1,2. Setting x = x

IJ2
in (13) leads to a set of

M x N algebraic equations relating u and V . These equations can be
written as

(I + K)u = p(u)~2, (14)

where I denotes the MN x MN identity matrix; K is the MN x MN matrix
whose k-th row Kk is given by

K~ = (K;~, . . .. K~~. K~~,K,K~~). ,K~~), i = integer(k/M), j = k Mod(M), (15)

where

Kij =
{ J

K=(xij,
}

12EI
X ’ )  #mn(X’) dx’

mn
n t’3A”

mn mn mn

(16)

P(u) is the MN x MN matrix whose k-th row is (p~~(u), . . ..p~~(u) . . . . .

P::(u), ..., p~~(u)), where

&
p::(u) =

0

{f

KS(X
}

x’) @mn(X’) dx’ ,
2(D lJ’

-  U(xmn))z Q
mn

i = int.eger(k/M), j = k Mod(M). (17)



Explicit expressions for K
lJ

and p corresponding to rectangular ands mn
circular mirrors are given in the Appendix.

A
If we set u = Ud = (ud(xll ), . . ..ud(xlN). . . .,ud(xM1 ),...,  ud(xMN))l,

then (14) becomes a set of M x N linear algebraic equations for the

unknown actuator voltages ~. Evidently, if P(ud) is nonsingular,  then ~z

is uniquely determined by

- 2
v = P(ud)-i(I + K)ud. (18)

The matrix P(ud)  is  nonsingular if  and only if  i ts  rows are l inearly

independent, or equivalently the M x N matrices given by

[

P:;(ud) “ “ “ P::(ud)
A

Pi,(ud) = : ●

.
● ●

P:;(ud)  ● “ “ p;;(u)

il=P ,...,M; J=l, . . ..N. (19)

are linearly independent. Since plJ depends on the desired mirror surface

displacement Ud, the set 1) of a~l displacements Ud such that P(ud) is

nonsingular corresponds to the set of all mirror surface displacements
which have one-to-one correspondence with the actuator voltages ~ . In

fact, if we define the nonlinear mapping u N(U) by ~(u)=p(u)-l(l  YK)u,
then N is an invertible mapping with domain 59. In the case where the
desired mirror surface deformation Ud. Ud(x) has spatial symmetry, the

number of equations in (14) can be reduced accordingly.

Now, given a set of actuator voltages V, the corresponding mirror
surface displacements at the mesh points x can be determined by solving

mn
the nonlinear equation (14) for u. If we define the nonlinear mapping

u ~(~2)U by fl(~2)U  = p(u)~2- Ku, then the solutions correspond to the

fixed points of A’(v). In physical situations where the actuator voltages

satisfy a magnitude constraint of the form ~2 s ~2 < co, the set of all
mn max

admissible ~’s is given by V = {~ E RXN:~2 =ti2, m=l 9..., M,n=

1 ,...,N} (a hypercube in RMN ). Then the s~t of ~lxl admissible U;S is

given by N-l(V).

Remarks:

(R-1) Once the required actuator voltages ~ for achieving the
mn

desired static mirror surface displacements at the mesh points are
determined, the mirror surface displacements at other points in the
spatial domain Sl can be found using (13) with U(xmn) set to Ud(xmn).

(R-2) In all the existing works on deformable mirrors, it is
assumed that the static mirror surface displacements at the mesh points
x are related to the actuator inputs by a linear transformation

mn
commonly called the influence function matrix which is valid for small
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displacements. For large mirror_ displacements, the relation between
u(x~j) and the actuator voltages V is given by (13) with x set. to x

lJ”
This relation is implicit and no~linear. In the special case of small
displacements such that approximation (6’) holds, this relation becomes
1 inear. Using (13) with a single actuator at Q to obtain u(x) in terms

mn

of G gives the usual influence function.
mn

(R-3) If the number of actuators is less than the number of mesh
points at which the desired mirror displacements are specified, then,
under the 1 inear approximation (6’), (14) consists of a set of
overdetermined linear algebra~.c equations for the unknown variables ~2 .

mn

We may use the least-squares solution, which corresponds to obtaining the
pseudo-inverse of the influence function matrix [3].

Nonint.eract.ing  Act.uat.ion:

Due to stress in the membrane, the voltage ~ applied to the (m,n)-th
mn

actuator will influence the membrane displacements at all the patch
locations. To simplify the mirror deformation control, it is desirable to
introduce appropriate feedback and new control variables c such that

mn

c only influences the mirror displacement u at the mesh point Xmn, andmn
U(xmn) only depends on c Thus , the new

mn”
controls c produce

mn

noninteracting actuation of the mirror surface displacements at the mesh
points. To achieve noninteraction, we introduce a static feedback control
of the form ~2 = F(c - u), where F is a feedback gain matrix which may
depend on u. Thus, in view of (14), we have

(I + K)u = P(u)F(c  - U), (20)

or

[1 + (I + K)-iP(u)F]u= (I + K)-iP(u)Fc, (21)

where c = (c *C
11’”””  IN’””

actuation, we seek an MN x
specified constant diagonal

*C )T. To achieve
“’CU1’”””  UN

noninteracting

MN matrix F such that (I + K)-lP(u)F = A, a
matrix with nonzero diagonal elements A~~.

Thus, u and c are related by a diagonal matrix operator given by

u = [1 + A]-iAc, (22)

and the required feedback gain matrix F is given by

F = P(u)-i(I + K)A. (23)

In physical terms, the static feedback control in effect cancels the
spring coupling forces to produce noninteracting actuation with respect
to the new control c. In the special case where the mirror displacements
are small as compared to the actuator gap D so that approximation (6’ ) is
valid, P becomes a constant matrix. Consequently, F is also a constant
matrix and the noninteracting controller is linear. We note that P(u) and
K depend on the parameters E, I, D, and .! whose values can bc

mn

accurately estimated. Therefore F can be determined with good accuracy.
Finally, the foregoing noninteracting controller is also valid for the



dynamic case, since the couplings between the mirror displacements at the
mesh points involve elastic forces only.

5. DYNAMIC SHAPE CONTROL

Assuming that the desired nominal static-shape Ud for the mirror iS

attainable by appropriate choices of the actuator voltages ~ , it. is of
mn

interest to control the deviations of the mirror shape about. u~ for

wavefront correction. We propose to achieve this objective in three
steps. Figure 4 shows the proposed structure of the overall control
system for wavefront correction. First, a static feedback controller for
achieving the desired nominal static mirror-shape and nonlnteractlng
actuation of the deformable mirror is introduced. The function of the
minor-loop feedback controller is to modify the dynamic response of the
actuators. This modification can also be performed ahead of the static
feedback controller depending on the method of implementation. Finally, a
global feedback controller which makes use of the output of the wavefront
estimator to generate the appropriate actuating signals for wavefront
correction is introduced. The static feedback controller has already been
discussed in Sec.4. In what follows, the discussion will be devoted to
the modification of the dynamic response of the actuator, and the global
shape controller for wavefront correction.

5.1 Actuator Dynamics Codification

The main objective here is to modify the dynamics of the actuator to
ensure satisfactory response to input commands. Since this controller is
to be integrated with the mirror assembly, the control law should have
the following properties:

(i) It should be sufficiently simple so that it can be realized by
microelectronic circuitry which can be integrated monolithically with the
mirror microstructure.

(ii) It should be model independent so that it is unnecessary to
identify the system parameters for their implementation.

(iii) Its performance should be sufficiently robust with respect to
system parameter variations.

Since the mirror surface has very little internal damping, the actuator
forces may induce undesirable surface vibrations. Therefore, it is
necessary to introduce damping externally. A possible approach is to
introduce external passive damping. This may be achieved by housing the
bottom mirror assembly in an enclosure which contains air, and has minute
holes for air passage. Alternatively, damping can be achieved by means of
active feedback controls.

To derive appropriate forms for the active feedback controls, we make
use of the partial differential equation (8) linearized about the nominal

A A
mirror surface deformation u = Ud(x) produced by the static actuator

d A
voltage ~ which produces the desired ud. Note that Ud(x) = Ud(x) only at

A

the mesh points x = x . Let 3U = u - Ud, and W = V - ~. The linearized
mn

equation (8) is given by

8



14N - 2
Cv

“I 1{[

0 mn 121; I

1

Covmntwn(t)
= - au(t, xmn) +“———-

}
—--~ @inn(x),

(D - ud(xmn))3 t3A (D - Ud(xmn))’~=ln=l mn

(24)
with boundary condition

~u(t,x) = O for x G tKl and t. z O, (25)

and initial conditions:

au(o,x) = Uo(x) - Ud(x), -# (o,x) = u:(x) for x ~ Q. ( 2 6 )

Consider the total energy functional of the perturbed mirror surface
about Ud given by

.= +J~p(x( #’+ T[[&]2+ [32]} dx

-+JQ i i [ ,D&’fn,x ,,, - ~)(~u(t}x))’~mn(x) dx.
(27)

m=ln=l d mn mn

This energy functional is nonnegative for all &u and tMu/t3t in the

Sobo 1 ev space H~(f2) (i.e. the Hilbert space of all real-valued

square integrable functions defined on (1 and vanishing on an such that
their first-order partial derivatives are also square integrable), if

- 2CV
o mn < 12EI

f o r m = l s..., M,n=l se-.$ N. (28)
(D -  ud(xmn))3 13A

mn

The time rate-of-change of &, after integration by parts, and making
use of (24) and boundary condition (25), is given by

Cv av (t)
+ o mn mn

} 1
f#mn(X)  dx

(D - ud(xmn))’
(29)

By requiring that ~u(t,x) = t$u(t,xmn) and 6k5u(t,x)/t3t  = N$u(t,x )/8t,
mn

for all x = Qmn, (29) reduces to

HN
C.ovmnc$vmn(t)

{f }

tlau(t,xmn)
d~/dt =

11 @inn(X)  dx at .
(D-ud(xmn))2 S2rn=ln=l mn

If we set

(30)

avmn(u = -7mn*(t,xmn)  @inn(x),  7 > 0, (31)
mn

then



HN
Cvx

d&/dt. = -
11

0 mn mn

{ J }
@inn(X) dx (~i3u(t,xmn)/dt)2 ~ 0. (32)

(D - ud(xmn))2 n~=ln=l mn

The control law (31) implies local rate-feedback at each actuator
location with feedback gain -T’ only.

mn

Incorporating the foregoing local rate-feedback with the noninter-
acting controller, the transfer function between u and c is a diagonal
matrix H(s) whose diagonal elements have the form:

gi
h~~(s) = , i=l, . . ..NM.

(s2 + 2<i&lis + @
(33)

To achieve zero steady-state error for step actuator commands, a
proportional-plus-integral minor-loop controller is introduced. The
parameters of the controller and the gain g~ are chosen to ensure

stability and satisfactory transient response to step-input commands.
When the noninteracting controls are implemented by means of a digital
computer, processing delays are introduced. These time-delays may be
incorporated in hi,(s).

5.2 Global Controller for Wavefront Correction

The initial step in wavefront correction is to estimate the wavefront
of the incoming light wave reflected from the deformable mirror based on
the output of the wavefront sensor. In physical situations, a wavefront
sensor such as the Hartmann-Shack wavefront sensor uses an array of
micro-lenses, each of which samples a portion of the incoming beam and
focuses light onto a detector consisting of a CCD camera or a lateral
field-effect photodiode array.

Let i2= be a bounded open connected subset of R2 corresponding to the

effective spatial domain of the wavefront sensor. We introduce a mesh on
A . .

~= whose mesh points are denoted by x = (xlm,x2n), m = 1,. ..,M; n =
,,

A
1A,...,N. At each mesh point x , we intr~~uce a patch !2~n,

mn
a bounded open

subset of Q , representing the effective aperture of the (m,n)-th lenslet
s
A A

containing x as an interior point. Let W = W(t,x) denote the wavefront
mn

of the incoming wave reflected from the deformable mirror and impinging
onto the wavefront sensor. The local gradient or angular tilt in the
wavefront averaged over the aperture of the (m,n)-th lenslet is given by

VV(t, .)ix Q
J

Mn vmn(x)VV(t,x)  dx = f-% - ~~n),
mn i-l

s

(34)

where ~ is a given spatial weighting function associated with the
mn

(m,n)-th lenslet; f is the focal length of the lenslet; x“ is the
m n.

nominal position of the focal spot for a collimated beam, and x is the
position of the focal spot for the incoming beam. Thus, the angular tilt
in the wavefront can be estimated by measuring the deviations (x - ~“ ).

mn

From the local gradient data, it is possible to obtain an estimate of the

10
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wavefront * = W(t,x) [12]. For wavefront sensors with circular apertures,

it is advantageous Lo express W in terms of Zernike polynomials. By
comparing W with a reference wavefront * we obtain the wavefront

R’
error 6* = W - Q. In order to generate the mirror shape correction

R
command from N, it is necessary to map the wavefront sensor domain Q

onto the mirror domain Q. Let this mapping be a diffeomorphism S from Q’s
onto fl. Then the mirror shape correction command 6C is obtained by

Aevaluating 6C(t,x) =

Again, due to the
estimator, a dynamic
controller to ensure

&l(t,S-lx)  at all the actuator locations x in Q.

presence of processing delays in the wmanvefront
compensator may be incorporated in the global shape
overall system stability.

6. PHYSICAL IMPLEMENTATION

In the physical implementation of the proposed control system, it is
desirable to integrate as much as possible the electronic circuitry of
the controllers with the mirror assembly. Due to the minute capacitances
associated with the actuators, it is clear that the actuator drivers
consisting of operational amplifiers must be located in the immediate
vicinities of the actuators.

To implement the rate-feedback control given by (31) for damping,
consider a parallel-plate capacitor driven by an operational amplifier as
shown in Fig.5. Assume that the distance A between the capacitor plates
is time varying so that the capacitance C(t) = &oA/A(t),  where A is the

area of each plate. Thus, we have

(35)

where i is the current flowing to the capacitor. Using the expression for
C(t), (35) can be rewritten as

‘ OA  d v
CA
o dA(t)

m)= -  —— v dt
= i(t), (36)

A(t)z

Now, if the voltage v(t) is held at a constant value v , then the plate
o

velocity is related to i(t) by

dA(t) = _ i(t)A(t)2  .
dt e Av

(37)
0 0

Thus , rate-feedback can be introduced by sensing the current i(t)
through a resistor in series with the capacitor as shown in Fig.5. The
current-sensing resistor can be attached directly to the bottom plate,

The proportional-plus-integral minor-loop controller can also be
realized using operational amplifiers which can be integrated with the
mirror assembly. Since the noninteracting controller requires algebraic
manipulations, an external digital computer is needed for its
implementation. However, it
the mirror assembly when
available.

Finally, the wavefront

is possible to integrate this controller with
single-chip specialized computers become

estimator and the global mirror shape

11



controller require a digital computer with sufficiently high speed so
that the processing time delay will not. be detrimental to the performance
of the overall system. Most likely, these components cannot be integrated
with the mirror assembly.

To obtain some information on the orders of magnitude of various
system parameters and variables, we consider a 1.7 mm square rectangular
mirror with 15 x 15 actuator patches. Each patch is a 25 pm square p~xel.
The mirror membrane, leaf springs, and supporting posts are micromachined
from single-crystal silicon sheets. Each leaf spring is a 45-pm long,
l-pm thick cantilever beam with rectangular cross-section (width =. 4 pm).
Usin~known2data  for single-crystal silicon [13J (Young’s modulus E = 1.9
x 10 N/cm , and mass density p = 2.3 gin/cm ), the electrostatic and
spring forces associated with a single actuator can be computed from (6)
and (7):

F~fA == 2.7669 X 10-21[V/(D - U)]2N (38)
e e

F~fA = 8.340 X 10-4
U N (39)

s s

where V is the actuator voltage, D is in meters, and u is the tip
displacement of the leaf spring in meters. For a square membrane with
width L under uniform tension T, the upward restoring force on a square
pixel with width 4’ located at the center of the membrane with a downward
displacement u is given approximately by

F o r T = l
becomes

For a
required
restoring

equal to

FT = 8Tl?u/L N. (40)

N/m, and the given dimensions for the membrane and pixels, (40)

FT = 0.11765u N. (40’ )

typical membrane displacement u = 0.1 pm, and D = 0.5 pm, the
actuator voltage V can be computed by balancing the upward
forces F and FT with the downward force F . The resulting V is

0.8248 ~olt which is within the operating range of typical
operational amplifiers.

Using the foregoing mirror parameters, the static actuator voltages
v for attaining a hi-parabolic mirror deformation are given by

rnn

ud(xi,x2) = 1.9156 x 10-13(8502 - x~) (8502 - x:) pm. (41)

The results are shown in Fig.6.

7. CONCLUDING REMARKS

In this paper, we have only considered the analytical design of a
control system for a micromachined deformable mirror. The approach is to
introduce first appropriate static feedback controls for noninteracting
actuation. Both local rate-feedback and a minor-loop controller are
introduced for modifying the dynamics of the actuators. Then a global
controller is introduced for wavefront correction. Special consideration
is taken to integrate the controllers with the mirror assembly. Other
important factors such as thermal effects on the performance of the
controlled deformable mirror are not studied here. The results pertaining
to the fabrication of the proposed deformable mirror, and the actual



performance of the proposed control system are planned to be reported in
t.hc near future.
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APPENDIX

Explicit expressions for K and p~~ corresponding to rectangular and
s

circular mirrors are given below.
A

For a rectangular mirror with spatial domain Q = QR = {(xI,x2) E R2:

Ixil < ti, i = 1,2} and uniform tension T, the Green’s function K iss
given by

[

k’n(x;+tl)

) (

k’n(xj+tz)
x sin

2L’1
sin

1212 “ (Al)

Let the actuator patches L? be square pixels with width A. Thus Q =

{(X 1,X 2) E R2: lx - 
X I ~nA/2, lx - Xzn[ < A/2}. Assuming th;; the1 lm 2

actuator weighting function @ corresponds to the characteristic function
mn

of Qmn(i.e. @ (x) = 1 if x = Qmn, and @inn(X)  = O otherwise), the
!’jncoefficients p defined by (17) are given by
mn

c mm
lJ =

411t2amk,13k,
0

Pmn 2(D 11- Ud(Xm~))2k=1  ~,=lnT(k2tf + k’21;)

(
kn(xl~+tl)

1[

kn(x2j+t2)
x sin 2&

sin
1 12L2 ‘

where x = (Xl~,X2j), and
ij

x

J

+A/2 k’n(x;+$)
lm

)

2/.
a = sin

{
dx; = ~ cos[k’n[xlm-$ + $))

mk’ .A/7 2.!Y 1
- l m  “  -

-  cos(k’n(xlm+
}

$+11)) ,

(A2)

(A3)

pnk: $~~sin( ““(~~~~] dx~ = ~{co~(k$~(x2;~+ ~2]]
- cos(k’rc(x2n+ $

}
+82)) . (A4)

The Green’s function K. for a circular mirror with spatial domain Qc =

{(r,O), O~r~r , 0 s Q s 2n} and uniform tension T is given by
o

14



K~(O, r,Q’, r’) =1 ~ 2
—Jk(A~~,r)[J~~,(A~k,r’)cos (ko)

k=l k$=inTr~[Jk+l (akk, rO)]2

X cos(ko’ ) + J~~, (Akk, r’ ~

where Jk denotes the Bessel function

(Akk,rO) is k’-th zero of J
k“

sin(kO)sin(kO’ )], A5 )

of the first kind of order k, and

Let the actuator patches Q be fan-shaped pixels with radial length A
mn

and aperture angle e as shown in Fig.3. Thus Q = {(f3, r): 18 - Oml <
mn

0P/2, [r - r I < A/2}~ In this case, the coefficients plJ defined by (17)
mn

with @ bei;g the characteristic function of Q
mn are given by

mn

lj
& com

P=
o

H
2

mn Jk(Akk,rj)
2(D -  ud(xmn))2 k=, k)=,nTr:[Jlc+l  (akk%)]2

,. A
x [amk,cos(ke~)  + ~nk,sin(kO~ )], (A6)

where

.

{f

e +0/2

}  {f

r + AIZ.
mk’

a = P cos(k’o’ ) do’ m
mk v

}
Jkk,  (Akk,r’) r’dr’ , (A?)

e - 9 / 2
mk’

r- A12
P m

{J
e +0/2 r + A/2

ink,  = ‘k’ p sin(k’ e’) do’
} {J

n
J

}
kk)(A~kjr’)  r’dr’ . (A8)

e -0/2nke r- A/2
P n
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Fig.3 Typical meshes and patches for rectangular and circular
Mirrors.
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